Circular Economy Towards Reducing E-waste: Cases and Best Practices

17th Annual Session on Human Settlements and Sustainable Cities and Human Settlements Award Ceremony, GFHS 2022
16 December 2022

Dr Sunil Herat
Associate Professor in Waste Management and Circular Economy
School of Engineering and Built Environment
Griffith University, Brisbane, Australia
Email: s.herat@griffith.edu.au
Global E-waste Generation

- During 2019 world generated around 53 million tonnes (Mt) of E-waste
- Global e-waste generation to reach 111 Mt by 2050
- Only 17% formally collected and recycled
- Asian region produced the highest amount of e-waste (24.9 Mt or 46.5% of total)
- The top three Asia-Pacific countries with the highest e-waste generation in absolute quantities are China (10.1 Mt), India (3.2 Mt) and Japan (2.5 Mt)

Source: Global E-waste Monitor 2020 (UNU)
Opportunities Associated with E-waste

• One tonne of phone handsets contains 3.5kg of Ag, 340 g Au, 140g of Pd and 130 kg of Cu

• Electronics make up 80% of the world demand for indium (magnetic properties in hard disks), 50% of antimony (flame retardants), 30% of silver (contact, solders), 12% of gold (circuits)

• The UN estimates that the value of selected raw materials in e-waste amounts to USD 57 billion during 2019. Iron (24 billion USD), copper (11 billion USD), gold (9 billion USD), Aluminium (6 billion USD) are considered to be the highest value materials contained in e-waste (Forti et al. 2020).
Global E-waste Monitor 2020 (UNU)

Global e-waste generated 2019: 53.6 Mt (7.3 kg per capita)

- 17.4% | 9.3 Mt: Global e-waste documented to be collected and properly recycled
- 82.6% | 44.3 Mt: Global e-waste flows that are not documented

Collection and recycling rates:
- Africa: 0.9%
- Asia: 9.4%
- Europe: 42.5%
- Oceania: 8.8%
- Latin America: 11.7%

Recycled materials are reclaimed:
- aluminum
- iron
- copper

7-20% is estimated to be exported as second-hand products or e-waste
8% is discarded into waste bins in high-income countries
Circularity and E-waste

- Reduce and reuse
- Properly recycle with no harmful impacts on the environment
- Design and manufacture electronic and electrical products with less toxic material inputs (design for the environment)
- Effective product take-back schemes towards circularity (Extended Producer Responsibility or EPR)
Australian Example
Singapore Example

Overview of the Extended Producer Responsibility Scheme for E-waste

PRODUCERS OF EEE

CONSUMER E-WASTE
(e.g. mobile phones, laptops & large household appliances)

NON-CONSUMER E-WASTE
(e.g. solar panels & data servers)

For more information, please visit www.nea.gov.sg
Connect with us on: [Social media icons]

October 2021
India’s Circular Economy Approach to E-waste
State of EPR Implementation

<table>
<thead>
<tr>
<th>Full implementation of EPR Regulations</th>
<th>Partial or Draft EPR Regulations</th>
<th>No EPR Regulations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australia, the People’s Republic of China, India, Japan, Singapore, the Republic of Korea, Taiwan Province of China</td>
<td>Bangladesh, Cambodia, Indonesia, New Zealand, the Russian Federation, Thailand, Viet Nam Malaysia</td>
<td>Bhutan, Laos, Mauritius, Maldives, Mongolia, Myanmar, Nepal, Pakistan, Philippines, Sri Lanka</td>
</tr>
</tbody>
</table>
End of Life Vehicles (ELVs)

- Vehicles that have reached the end of useful life (naturally or unnaturally) and can no longer be used are ELVs.
- ELVs are one of the fastest-growing waste streams, which is estimated to grow by approximately 80 million vehicles per annum.
- ELVs generally comprise 20 to 30 thousand various parts made of precious materials such as platinum, aluminum, lead, zinc, copper, iron, glass, rubber, textile, wires, plastic, and many others.
- ELVs also contain many harmful components such as transmission oils, fuels, refrigerants, brominated flame retardants, and acid batteries.
ELV Recycling in Japan

Law on Recycling of End-of-Life Vehicles (ELV Recycling Law)

• Japan's ELV Recycling Law specifies that users should bear the disposal cost of fluorocarbons, airbags, and automobile shredder residue (ASR) items from ELVs. As a result, owners of disposed of automobiles shall pay recycling fees when they purchase new cars.

• Manufacturers are required to take back and recycle the above items

• The fund is managed by Japan Auto Recycling Promotion Center (JARC) and Japan Auto Recycling Partnership (JARP).

- The regulation restricts certain hazardous substances in electrical and electronic products and vehicles
- Several stakeholders are involved in the recycling and treatment of ELV
- Current recycling rates (89%) are below the national mandatory target of 95%
- Scope and roles of physical and financial responsibilities nor clear
Way Forward

• Well defined national e-waste management strategy based upon circular economy and 3R concepts.
• Such strategy should not only address the environmental and health impacts of e-waste (end-of-pipe) but also look at the reduction of e-waste through green design (up-the-pipe).
• It should also create enabling conditions for relevant stakeholders to develop business and economic opportunities to recover the materials from e-waste.
• The strategy should take into account the financial, institutional, political and social aspects of e-waste management, in particular, incorporating the activities of informal e-waste recycling sector
Way Forward – Connecting with SDG Targets

<table>
<thead>
<tr>
<th>Action</th>
<th>SDG目标</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elimination of hazardous substances during production of EEE, and during dismantling and processing of E-waste</td>
<td>3.9</td>
</tr>
<tr>
<td>Formalisation of the informal E-waste recycling sector to create decent working conditions and environmentally sound management of E-waste</td>
<td>8.3</td>
</tr>
<tr>
<td>Recognition of the informal E-waste sector and integrating into a formal waste management system thereby protecting their labour rights</td>
<td>8.8</td>
</tr>
<tr>
<td>Establishment of proper institutional infrastructures for collection, storage, transportation, recovery, treatment and disposal of E-waste in cities to reduce the adverse per capita environmental impacts due to unsound management of E-waste</td>
<td>11.6</td>
</tr>
<tr>
<td>Eliminate open dumping and open burning of E-waste and use of poor chemical processes to separate valuable materials in E-waste</td>
<td>12.4</td>
</tr>
<tr>
<td>Design EEE with circularity in mind to prevent E-waste generation at the end-of-life and implement EPR systems to achieve recycling of E-waste</td>
<td>12.5</td>
</tr>
</tbody>
</table>
Associate Professor Sunil Herat (Waste Management and Circular Economy)

School of Engineering and Built Environment
Griffith University, Nathan Campus
Queensland 4111, Australia
Ph: +61 7 3735 6682
Email: s.herat@griffith.edu.au

• Course Convenor (Solid Waste Management, Hazardous Waste Management, Cleaner Production & Circular Economy)
• Program Director: Master of Environmental Engineering
• Program Director: Master of Environmental Engineering & Pollution Control
• Program Advisor: Bachelor of Engineering (Environmental Eng)